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Abstract
The optimum abstraction policy of coastal groundwater resources is prescribed by solving a meta-
modelbasedsaltwater intrusionmanagementmodel.Groundwaterparameteruncertaintiesare explic-
itly incorporatedinto thedevelopedmeta-models inorder toaddress theuncertaintiespresent incoastal
aquifer processes.Nevertheless, the accuracy andconsequent reliability of suchamanagementmodel
depends upon the right choice of meta-models or a combination of meta-models. The optimal
combinationofmeta-models, also referred toasanensemblemeta-model, canbeselectedbyapplying
theDempster-Shafer(D-S)theoryofevidence.D-Sevidencetheoryprovidesaplatformuponwhichto
base the selection of the best meta-model or combination of meta-models to formulate the preferred
ensemble. This study demonstrates the application of D-S theory to provide an ensemble of meta-
models for developing saltwater intrusion management models in coastal aquifers. The prediction
accuracy of the developed ensemble meta-model is compared with that of the best standalone meta-
model in theensemble.Theresultsconfirmthat theensemblemeta-modelperformsequallywellwhen
comparedwith the bestmeta-model in the ensemble.Thedevelopedmeta-models and their ensemble
are then used to develop computationally feasiblemultiple objective saltwater intrusionmanagement
models by utilizing an integrated simulation-optimization approach. The solution results of the
management models demonstrate the superiority of the ensemble meta-model approach over
standalonemeta-models inobtainingParetooptimalgroundwater abstractionpatterns.Theevaluation
of the proposed methodology is demonstrated using an illustrative multilayer coastal aquifer system
subjected to groundwater parameter uncertainties.
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1 Introduction

Saltwater intrusion has become one of the challenging issues in the sustainable management of
coastal aquifers. An efficient saltwater intrusion management policy requires a planned and
judicial exploitation of water resources. Unplanned over-abstraction accelerates the contami-
nation of already vulnerable fresh groundwater resources in coastal aquifers. Therefore, a
planned groundwater abstraction policy needs to be implemented for ensuring the stability of
freshwater supplies to communities living near the coastal regions of the world. However, the
modelling of coastal aquifer processes is associated with ubiquitous parameter and prediction
uncertainties. Parameter uncertainty can be addressed by developing meta-models that explic-
itly incorporate groundwater parameter uncertainties. Prediction uncertainty can be addressed
by using the best combination of meta-models: i.e., an ensemble of meta-models to predict the
future scenarios of saltwater intrusion processes. In this study, we propose this ensemble
approach with a new selection criterion for developing an optimal groundwater extraction
strategy. Prediction uncertainty is addressed by employing the best combination of meta-
models (referred to as an ensemble), from various possible combinations of meta-models, in
order to predict the future scenarios of saltwater intrusion processes. The ensemble approach is
utilized for developing a multiple objective groundwater extraction strategy for saltwater
intrusion management in coastal aquifers.

In addition to planned abstraction from the production wells, hydraulic control measures
such as barrier wells provide a reduction in the extent of saltwater intrusion in coastal aquifers
(Sreekanth and Datta 2011a). These barrier wells create hydraulic barriers near the shoreline,
and help to increase beneficial water abstraction from the production wells. However, ground-
water abstracted from barrier wells is generally very saline and cannot be used for beneficial
purposes; therefore, the objective should be to reduce water abstraction from these wells.
Groundwater abstractions from both production and barrier wells are controlled in such a way
that the resulting salinity concentrations at specified monitoring locations do not exceed the
maximum permissible values. To create a negative hydraulic barrier along the coast in order to
reduce the extent of saltwater intrusion, a set of negative hydraulic barrier wells are used in the
present study. This methodology requires an integrated simulation-optimization (S/O) ap-
proach in which the simulation model calculates the corresponding salinity concentrations
from the randomly generated groundwater abstraction patterns by means of the optimization
algorithm. The calculated salinity concentrations are then evaluated by the optimization routine
for the violation of pre-specified maximum permissible salinity concentrations. The process
continues until the global Pareto optimal solutions are obtained. These repeated evaluations are
generally associated with a huge computational burden (Dhar and Datta 2009).

One of the most promising ways of attaining computational effectiveness in an S/O method
is the utilization of approximate meta-models (Blanning 1975). Previous studies in the
literature of saltwater intrusion management models (Ataie-Ashtiani et al. 2014; Bhattacharjya
and Datta 2005; Christelis et al. 2017; Hussain et al. 2015; Roy and Datta 2018; Sreekanth and
Datta 2011b) have utilized S/O approaches in which the simulation model was replaced by
either a standalone meta-model (Bhattacharjya and Datta 2009; Roy and Datta 2018) or an
ensemble of meta-models (Roy and Datta 2017a; Sreekanth and Datta 2011b). Meta-models
are developed by means of the input-output training datasets obtained from solution results of a
numerical simulation model. Meta-models thus developed approximate and represent the
complex physical processes of coastal aquifers. The nonlinear and complex processes of
coastal aquifer systems are associated with uncertainties in groundwater parameters. Therefore,
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the developed meta-models should capture the variations in uncertain groundwater parameters.
This study proposes Multivariate Adaptive Regression Spline (MARS) (Friedman 1991) based
meta-models, which are developed based on different realizations of a set of uncertain
groundwater parameters.

Meta-models are also associated with a certain degree of prediction uncertainty. If not
addressed properly, this prediction uncertainty may propagate to the integrated S/O approach
and may influence the optimality of solutions. An ensemble of meta-models deals with this
prediction uncertainty by minimizing the adverse effects of a standalone meta-model (Goel
et al. 2007). An ensemble meta-model provides a more reliable, accurate and dependable
prediction. Moreover, it provides better Pareto optimal solutions compared to a standalone
meta-model in the integrated S/O based saltwater intrusion management models (Sreekanth
and Datta 2011b). Therefore, to account for the prediction uncertainties of meta-models, a
weighted average ensemble of MARS meta-models (called an ensemble meta-model hereafter)
is proposed in this study. The ensemble approach utilizes the Dempster-Shafer (D-S) theory of
evidence (Dempster 1968; Shafer 1976) to select the best combination of meta-models
comprising the ensemble. The ensemble meta-model thus developed is externally linked to a
Controlled Elitist Multi Objective Genetic Algorithm (CEMOGA) (Deb and Goel 2001) to
develop optimal groundwater extraction strategies in coastal aquifers.

The D-S evidence theory is based on the combination of Dempster’s original concepts of
relaxing certain Bayesian restrictions and Shafer’s contribution to expanding them (Caselton and
Luo 1992). The D-S theory can be thought of as a conventional probability theory, which assumes
a multiple valued mapping from one space to another (Dempster 1967). It is an evidence theory
that offers methods of integrating conflicting, vague and uncertain information from diverse
sources to provide a certain amount of belief. These imprecise segments of information are stored
in a function called Basic Probability Assignments (BPA), which is associated with belief (Bel),
plausibility (PI), and pignistic probability (BetP). In meta-modelling terms, the BPAs contain
information about statistical indices of meta-model performances, e.g. the Coefficient of Corre-
lation (R), Root Mean Squared Error (RMSE), Index of Agreement (IOA) etc. (Müller and Piché
2011). It must be noted that a particular meta-model may have conflicting characteristics in terms
of statistical performance indices. These conflicting performance indices need to be addressed in
determining the belief in the prediction capabilities of that meta-model. Dempster’s rule of
combination is used to incorporate these conflicts.

In the present study, the selection of a single best meta-model or different combinations of
meta-models are carefully chosen based on applying the evidence theory. Unlike the previous
studies of saltwater intrusion management models, where either a single meta-model or a
combination of a certain number of meta-models are linked to the optimization algorithm in
order to develop the management model, the present study focuses on selecting the best
combination of meta-models for approximating the saltwater intrusion processes in coastal
aquifers. In addition, the individual meta-models are developed by using different realizations
of uncertain model parameters. Therefore, the developed meta-models explicitly incorporate
the groundwater parameter uncertainty.

This paper contributes to the development of meta-models that explicitly incorporate
groundwater parameter uncertainties. It also aims at selecting the best meta-model as well as
the best combination of meta-models (ensemble) to approximately emulate saltwater intrusion
phenomena in coastal aquifers by utilizing the D-S theory of evidence. Finally, the study
provides a comparison of the quality of the Pareto optimal groundwater abstraction patterns
derived from the ensemble meta-model and the standalone meta-models.
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2 Methodology

A number of MARS based meta-models are developed from the solutions of a numerical
simulation model. The best meta-model and the best combinations of meta-models are selected
through the application of the D-S theory of evidence. The meta-models thus obtained are
integrated with the optimization algorithm in order to prescribe optimal groundwater abstrac-
tion strategies as solutions. Brief explanations for each of the constituents of the methodology
are provided in the following subsections.

2.1 Numerical Modelling of Physical Processes in Coastal Aquifers

A three dimensional (3D) density reliant combined flow and salt transport numerical simula-
tion model, FEMWATER (Lin et al. 1997) is utilized for simulating the coastal aquifer
processes. The simulation results provide the required number of input-output training datasets
for MARS based meta-models. The governing 3D flow and transport equations are provided in
Lin et al. (1997), and are not repeated here.

2.1.1 Groundwater parameter uncertainty

Groundwater flow and transport processes are subjected to uncertain model parameters.
Uncertainty in groundwater modelling systems arises primarily from variations in aquifer
properties such as bulk density, compressibility, and hydraulic conductivity (Ababou and Al-
Bitar 2004). Other causes of uncertainties may originate in changes in aquifer recharge and
groundwater abstraction patterns. The present study incorporates uncertainties in aquifer
recharge, bulk density, compressibility, and hydraulic conductivity in simulating the coupled
flow and solute transport phenomena. The uncertain groundwater parameters are paired
randomly with the transient groundwater abstraction patterns to acquire the resulting salinity
concentrations at selected monitoring locations.

Realizations of hydraulic conductivity values are obtained from a lognormal distribution.
Aquifer recharge, bulk density, and compressibility realizations are acquired through Latin
Hypercube Sampling (LHS) (Pebesma and Heuvelink 1999). Different realizations of these
uncertain model parameters are then integrated to generate a multivariate realization of these
parameters.

2.1.2 Input-Output Training Patterns

Meta-models learn from the trends in input-output training datasets produced by using a
simulation model. The simulation model is fed with input groundwater abstraction values to
obtain the resulting salinity concentrations. One set of groundwater abstraction values and the
corresponding salinity concentrations form one pattern of input-output dataset. A required
quantity of these input-output datasets are used for training and validation of the meta-models.

Transient groundwater abstraction values are obtained from the LHS technique with
specified lower and upper bounds of 0 m3/day and 1300 m3/day, respectively. For each set
of uncertain groundwater parameters, 500 sets of groundwater abstraction values are used in
order to generate 500 values of salinity concentrations. Five sets of uncertain model parameters
are used to obtain 5 × 500 sets of salinity concentrations at specified locations within the
aquifer. A meta-model is developed from each randomized parameter set. Therefore, 5 meta-
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models are developed, each incorporating a particular set of uncertain groundwater model
parameters.

2.2 Meta-Model

MARS based meta-models and their ensembles are used to obtain a reasonably accurate
estimation of salinity intrusion processes. MARS is a rapid, flexible, adaptive, and nonpara-
metric approach to developing regression models (Friedman 1991). MARS maps input-output
relationships by dividing the solution domain into different intervals of inputs, and by fitting
distinct Splines or Basis functions into these intervals (Bera et al. 2006). MARS adopts both a
frontward and a backward step during nonlinear mapping of the inputs and outputs. In the
forward step, MARS builds a complex model by utilizing the specified maximum number of
Basis functions. However, to prevent model overfitting and complexity, MARS adopts a
backward stepwise procedure to parsimoniously select only the most influential input variables
that provide accurate prediction of output variables (Salford-Systems 2016). In general, the
input-output mapping of meta-models is expressed as

Soutput xð Þ ¼ Moutput xð Þ þ ε ð1Þ
where, Soutput(x) = output from the simulation model at point x,Moutput(x) = predicted output of
the meta-model, and ε = error between simulation model outputs and meta-model predictions.

A commercial software package Salford Predictive Modeller (SPM v8.2) (SPM 2016) is
used to develop the MARS based meta-models.

2.3 The Dempster-Shafer evidence theory

The D-S theory of evidence can be characterized as a conventional probability theory when a
multiple valued mapping from one space to another is considered (Dempster 1967; Wasserman
1990). The basic concept of multiple valued mapping from T to Θ is presented in Fig. 1
(Wasserman 1990).

In Fig. 1,Θ denotes the parameter space, and θ represents each individual possible value within
this parameter space of interest such that θ ⊂Θ. T defines a probability space with a probability
density of μT on T. Then the multiple valued mapping from T toΘ is presented by Γ(t) ⊂Θ, i.e. an
observation t in T is corresponding to the observation that the true value of θ is in Γ(t) ⊂Θ. The
conventional probability distribution μT in T is referred to as an imprecise probability distribution on
Θ (Walley 1991) or a basic probability assignment (BPA) (Shafer 1976). Shafer (1976) defined BPA
as m(A) for A ⊂Θ, that is m(A :A =Γ(t)) =μT(t). The collection of all subsets ofΘ is known as the
Bframe^ ofΘ. Therefore, the Bframe^ ofΘ is an Bexhaustive set of mutually exclusive hypotheses
or propositions^. This Bframe^ of Θ forms the essential concept of D-S.

The BPA is the fundamental method of expressing uncertainty in the D-S theory of
evidence. The BPA is a type of probability assignment in which probability values are assigned
to both subsets and singleton elements (the Bframe^ of Θ). BA BPA value on a subset
represents the belief that is exactly committed to that subset and to nothing smaller^
(Caselton and Luo 1992). Information on a certain hypothesis or proposition is stored in
BPA to obtain the reliability of a given hypothesis. The sum of BPA values over the frame Θ
must be equal to 1, i.e. ∑

A⊂Θ
m Að Þ ¼ 1. BPAs are associated with three functions: belief (Bel),
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plausibility (PI), and commonality (H) (Caselton and Luo 1992). For a subset A ⊂Θ, belief
and plausibility of A can be calculated from the BPA on Θ as

Bel Að Þ ¼ ∑
B⊂A

m Bð Þ ð2Þ

PI Að Þ ¼ ∑
B∩A≠ϕ

m Bð Þ ð3Þ

where, ϕ = null set.
The commonality of subset A accumulates all of the probability values in the BPA that

could potentially be dedicated to A from all of the supersets that include A. The commonality
for the subset A ⊂Θ is defined as

H Að Þ ¼ ∑
B⊂Θ;A⊂B

m Bð Þ ð4Þ

The rule to integrate two belief functions is introduced by Shafer (Shafer 1976). This rule of
combining two belief functions is referred to as Dempster’s rule of combination. This is an
Bassociative and commutative operation^ designed to map two belief functions, both defined
on the same parameter space Θ into a new belief function on Θ. Let m1and m2 be two BPAs
on Θ. Then, Dempster’s combination rule provides the new combined BPA m (m =m1⊕m2)
that can be expressed as

m Að Þ ¼ m1⊕m2 Að Þ

¼
0; A ¼ ϕ

∑
B∩C¼A

m1 Bð Þm2 Cð Þ
1−K

; A≠ϕ

8<
: ð5Þ

K ¼ ∑
B∩C¼ϕ

m1 Bð Þm2 Cð Þ; K∈ 0; 1ð Þ ð6Þ

where ⊕denotes orthogonal sum of m1 and m2. B and C are the subsets of hypotheses in Θ.

Fig. 1 The multiple valued mapping from T to Θ that generates a BPA on Θ (after Wasserman (1990))
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2.4 Ensemble of meta-models using Dempster-Shafer theory of evidence

It is often difficult to decide in advance on the suitability of a particular meta-model for the
problem at hand. Therefore, the effectiveness of different meta-models or different combina-
tion of meta-models needs to be investigated in order to obtain the most effective approxima-
tion of the physical processes of interest. The combination of meta-models is commonly
referred to as an ensemble of meta-models. In ensemble approach, the output from each
individual meta-model are integrated to provide a combined output. Mathematically this can
be expressed as

Yensemble ¼ ∑
n

i¼1

Ymeta−modeli
n

ð7Þ

where, Yensemble = output of the ensemble, Ymeta−modeli = output from the ith meta-model, and n
is the number of meta-models in the ensemble.

Furthermore, not all meta-models perform equally well for particular problems. Therefore,
the influence of each meta-model in the ensemble needs to be adjusted based on its perfor-
mance on the test dataset. This approach is known as weighted average ensemble, and the
prediction Y(x) of such an ensemble is represented by

Y xð Þ ¼ ∑
n

i¼1
ωi � yi xð Þ ð8Þ

∑
n

i¼1
ωi ¼ 1 ð9Þ

where, yi(x) = prediction of the ith meta-model constituting the ensemble, ωi = corresponding
weights to ith meta-model, and n is the number of meta-models.

The D-S theory of evidence is applied to calculate the weight of each of the contributing
meta-models. The performance indices of meta-models are considered as BPA (Müller and
Piché 2011) of the D-S theory. Five performance indices have been selected as meta-model
characteristics. They are Coefficient of Correlation (R), Index of Agreement (IOA), Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Median Absolute Deviation
(MAD). These meta-model characteristics are calculated from the meta-model’s predicted and
simulation model outputs. Ideally, the best meta-model should have higher values of R and
IOA as well as lower values of RMSE, MAE, and MAD.

The meta-model characteristics are normalized to satisfy the condition that the sum of BPA
values over the frameΘmust be equal to 1, i.e. ∑

A⊂Θ
m Að Þ ¼ 1. The normalization is performed

by using the following sets of equations (Müller and Piché 2011):

mR
i ¼ Ri

∑
j∈R

Ri
;mIOA

i ¼ IOAi

∑
j∈R

IOAi

mRMSE
i ¼

1

RMSEi

∑
j∈R

1

RMSEi

;mMAE
i ¼

1

MAEi

∑
j∈R

1

MAEi

;mMAD
i ¼

1

MADi

∑
j∈R

1

MADi

ð10Þ

where, R represents the set of meta-models in the ensemble.
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These normalized BPAs are used to calculate the pignistic probabilities of each meta-model.
Pignistic probabilities are important elements of the decision making process. At the onset of
decision making, belief is at the credal level (Smets 1999), and is characterized by the basic belief
assignment,m defined on the Bframe of discernment^,Θ. This belief induces a probability function
at the ‘pignistic’ level, BetP defined on the same Bframe of discernment^, Θ. Smets (1990) labels
this transformation as Bpignistic transformation^, mathematically expressed as

BetP xð Þ ¼ ∑
A⊆Θ; x∈A

m Að Þ
1−m ϕð Þ

1

Aj j for every x∈Θ ð11Þ

The BetP can be used to make decisions based on the theory of expected utilities, the
justification of which relies on rationality requirements explained in details in Smets and
Kennes (1994).

Based on the pignistic probability values, the weights assigned to each meta-model in
different combinations of ensembles are determined. This can be mathematically expressed as

ωi ¼ BetPi

∑
n

i¼1
BetPi

ð12Þ

where, ωi = weights assigned to ith meta-model for a particular combination, BetPi = pignistic
probability of the ith meta-model for the corresponding combination, and n = number of meta-
models contributing to form the corresponding combination.

Every possible combination of ensembles is evaluated, i.e. different combinations of two-, three-,
and four-model blends, standalone individual meta-models, and all meta-models together are
considered. Five MARS based meta-models (denoted by M1-M5) constitute 31 focal elements.
For single models, the focal elements are [M1], [M2], [M3], [M4], and [M5], respectively. For two
model combinations the corresponding focal elements are [M1, M2], [M1, M3], [M1, M4], [M1,
M5], [M2, M3], [M2,M4], [M2, M5], [M3, M4], [M3,M5], and [M4,M5], respectively. The focal
elements for the three model combinations are [M1,M2,M3], [M1,M2,M4], [M1,M2,M5], [M1,
M3,M4], [M1,M3,M5], [M1,M4,M5], [M2,M3,M4], [M2,M3,M5], [M2,M4,M5], and [M3,
M4,M5], respectively. Four model combinations have the following focal elements: [M1, M2,M3,
M4], [M1, M2, M3, M4], [M1, M2, M4, M5], [M1, M3, M4, M5], and [M2, M3, M4, M5],
respectively. The focal element corresponding to the five model combination is [M1, M2, M3, M4,
M5]. Statistical performance indices are calculated for each combination of meta-models, and
normalized to obtain the BPAs of the corresponding combinations. Then D-S is applied to the
BPAs of the combinations of meta-models in order to calculate the corresponding pignistic
probabilities. The calculated pignistic probability values provide an indication of which of all of
the considered combinations ofmeta-models is the best. The higher the value of pignistic probability,
the better the performance of the combination meta-model is.

AMATLAB toolbox, SurrogateModel Optimization Toolbox (Müller 2012) is used to calculate
the weights of combination meta-models by applying the D-S theory of evidence. The code is
slightly modified for using five meta-models in developing different combinations of meta-models.

2.5 Saltwater intrusion management model

The selected best combination of meta-models and the standalone meta-models are linked
externally to the optimization algorithm CEMOGA, in order to develop S/O based saltwater
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intrusion management models. The multi-objective management models provide optimal
abstraction values in terms of a Pareto optimal front. The Pareto front specifies two contra-
dictory objectives of coastal groundwater management strategies. The first objective ensures
maximum abstraction of groundwater from a group of production wells. The second objective
minimizes the abstraction of water from a group of barrier wells placed near the coastline to
hydraulically control saltwater intrusion. Both of these objectives need to be satisfied while
meeting the requirement of maximum permissible salinity concentrations at specified moni-
toring locations. The multi-objective optimization formulation is expressed as (after Dhar and
Datta (2009))

Maximize : f 1 ¼ ∑
R

r¼1
∑
t

t¼1
Q PWð Þtr ð13Þ

Minimize : f 2 ¼ ∑
S

s¼1
∑
T

t¼1
Q BWð Þts ð14Þ

Subject to Ci ¼ f Q PWð Þ;Q BWð Þð Þ ð15Þ

Ci≤Cmax ð16Þ

Q PWð Þmin≤Q PWð Þtr ≤Q PWð Þmax ð17Þ

Q BWð Þmin≤Q BWð Þts≤Q BWð Þmax ð18Þ
where, PW = production wells, BW = barrier extraction wells, R = total number of production

wells, S = total number of barrier extraction wells, T = total number of time steps, Q PWð Þtr=
groundwater abstraction from the rth production well at tth time period,Q BWð Þts = groundwater
abstraction from the sth barrier well at tth time period, Ci = salinity concentrations at ith

monitoring location at the end of the management period, eq. (15) indicates linking of the
combination of meta-models within the optimization model, eq. (16) restricts the salinity
concentrations at ith monitoring location below the maximum permissible salinity concentra-
tions for that location, Eqs. (17) and (18) sets the lower and upper bounds of the groundwater
extraction rates from the production and barrier wells, respectively.

The solutions obtained from the multiple objective coastal groundwater management model
are verified and compared by using the constraint method (Datta and Peralta 1986) of solving
the multiple objective model, i.e. by converting it to a series of single objective optimization
formulations. For this purpose, one of the objectives is specified explicitly and the other
objective is introduced as a constraint ensuring specified different minimum levels. This
process is repeated multiple times for specified values of the second objectives. This ensures
solution of a single objective optimization model each time, with the solution representing a
single point on the Pareto Optimal front. The single objective formulation is expressed as

Maximize : f ¼ ∑
R

R¼1
∑
T

t¼1
Q PWð Þtr ð19Þ

Subject to

An Ensemble Meta-Modelling Approach Using the Dempster-Shafer Theory of... 783



www.manaraa.com

Ci ¼ f Q PWð Þ;Q BWð Þð Þ ð20Þ

Ci≤Cmax ð21Þ

∑
S

s¼1
∑
T

t¼1
Q BWð Þts≤Q BWð Þspecified ð22Þ

Q PWð Þmin≤Q PWð Þtr ≤Q PWð Þmax ð23Þ

Q BWð Þmin≤Q BWð Þts≤Q BWð Þmax ð24Þ
where, Q(BW)specified = total specified amount of water abstraction from the barrier extraction
wells. Both management models are executed in the MATLAB environment utilizing parallel
computing platforms. The multiple objective optimization problem is solved using the Con-
trolled Elitist Multiple Objective Genetic Algorithm (CEMOGA) solver in MATLAB
(MATLAB 2017). The single objective formulation is solved using GlobalSearch
(MATLAB 2017) optimization approach, which utilizes repeated runs of a local solver
(‘fmincon’ (MATLAB 2017)) to obtain the global optimal solution. The flow diagram of the
proposed ensemble based methodology is showed in Fig. 2.

2.6 Performance evaluation indices

Performances of the standalone meta-models and the ensemble meta-model are evaluated by
using the following statistical performance indices.

R ¼
∑
n

i¼1
Ci;S−CS

� �
Ci;S−CP

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Ci;S−CS

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1
Ci;P−CP

� �2
r ð25Þ

IOA ¼ 1−
∑
n

i¼1
Ci;S−Ci;P
� �2

∑
n

i¼1
Ci;P−CS

��� ���þ Ci;S−CS

��� ���� �2 ð26Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
Ci;S−Ci;P
� �2s

ð27Þ

RRMSE ¼ RMSE
1

n
∑
n

i
Ci;S

ð28Þ
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MAE ¼ ∑
n

i¼1

Ci;S−Ci;P
�� ��

n
ð29Þ

MAD CS ;CPð Þ ¼ median jC1;S−C1;Pj; jC2;S−C2;Pj;…; jCn;S−Cn;Pj
� �
f or i ¼ 1; 2;…; n

ð30Þ

MAPRE ¼ 1

n
∑
n

i¼1

Ci;S−Ci;P

Ci;S

����
����� 100 ð31Þ

Kling–Gupta efficiency (KGE) is calculated as

N realizations of randomized 

groundwater parameters 

M realizations of groundwater 

extraction patterns 

M×N realizations of salinity concentrations at 

specified monitoring locations 

Simulation of aquifer processes 

Input dataset 

Develop N meta-models  

Calculate BPAs of N meta-models 

Calculate pignistic probabilities 

Calculate BPAs for different 

combinations of mixture models  

Calculate pignistic probabilities of 

each mixture model 

Use pignistic probabilities of each 

mixture to select the best mixture 

Ensemble of meta-models  

Management model  
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Fig. 2 Flow diagram of the proposed methodology for ensemble based management strategy development
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KGE ¼ 1−ED ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R−1ð Þ2 þ ∝−1ð Þ2 þ β−1ð Þ2

q
ð32Þ

∝ ¼
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1

n
∑
n

i¼1
Ci;P−CP

� �2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
Ci;S−CS

� �2
r ð33Þ

β ¼
1

n
∑
n

i¼1
Ci;P

1

n
∑
n

i¼1
Ci;S

ð34Þ

where, Ci, S = simulated salinity concentration values, and Ci, P = predicted salinity concentra-

tion values, CS = mean values of the simulated salinity concentration values, CP = mean
values of the predicted salinity concentration values, n = number of data points, ED =
Euclidian distance from the ideal data points, ∝ = relative variability in the predicted and
simulated salinity concentration values, β = ratio between the mean predicted and mean
simulated salinity concentration values representing the bias.

3 Application of the proposed methodology

The performance of the ensemble meta-model based saltwater intrusion management model is
assessed for an illustrative multilayered coastal aquifer study area. The aquifer system is subjected
to transient groundwater abstractions from a collection of production and barrier abstraction wells.
Uncertainty in some of the groundwater parameters are considered. A three-dimensional view of
the illustrative study area (Roy and Datta 2017b) is presented in Fig. 3 below.

The illustrative multilayered coastal aquifer system covers a study area of 4.35 km2. The
unconfined aquifer system is 80 m thick, divided into four individual layers with different
materials. A stream flowing through the right side of the aquifer provides a specified stream
water head of 1 m at the upstream end. This head varies linearly along the stream and reaches
to 0 m at the coastal boundary. Both ends of the coastal boundary are assigned an initial head
of 0 m. The salinity concentration at the coastal boundary is assumed to have a constant value
of 35,000 mg/l. Eleven (11) production and five barrier extraction wells with a well density of
3.68 wells/km2 are considered. The production and barrier wells are denoted by PW1-PW11
and BW1-BW5, respectively, in Fig. 3. The entire simulation time of five years is divided into
identical time steps of five days. The management period of five years is divided into five
identical time steps of one year each. Water abstraction from the wells is assumed to be
constant during each one-year period. Salinity concentrations are measured at the end of each
management horizon, at specified monitoring locations. Five monitoring locations are sited at
different salinity regions of the aquifer.

The proposed management model considers 80 decision variables (X1-X80). These vari-
ables represent groundwater abstractions from 16 wells (11 production wells +5 barrier wells)
in the five-year management period. Variables X1-X55 denotes groundwater abstraction from
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the production wells in space and time. Variables representing water abstraction from barrier
extraction wells are represented by X56-X80 in space and time.

4 Results and Discussion

The results of the prediction capabilities of standalone meta-models and their ensembles are
presented in this section. In addition, the results of the saltwater intrusion management models
prescribing optimal groundwater abstraction strategies for the coastal aquifer are also presented.

The performances of MARS meta-models at monitoring location L1 are presented in
Table 1.

It is observed from Table 1 that the developed MARS meta-models produce higher values
of R and IOA as well as lower values of MAD, MAE, and RMSE. However, meta-model
predictions show a contradictory nature in terms of different statistical indices. For example,
meta-model M5 can be considered the best among five meta-models when IOA, MAE, and
RMSE criteria are considered. On the other hand, MAD criterion indicates the better perfor-
mance of M1 among the meta-models. In addition, meta-models M1 and M5 produce the same
value of R. Therefore, based on this evidence at hand, it is difficult to select the best meta-
model. Similar results are obtained for all developed meta-models at all five monitoring
locations (L1-L5). This conflicting nature of meta-model performance necessitates the incor-
poration of all the contradictory performance indicators in the selection process of meta-
models. The D-S theory of evidence is applied in this study to resolve this conflict in prediction

Fig. 3 3D view of the coastal aquifer system (after Roy and Datta (2017b))
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capabilities. The D-S theory incorporates all model characteristics as bases upon which to
select the best meta-model.

4.1 The D-S Evidence Theory in the Selection of Meta-Models and their Ensembles

The D-S theory of evidence is applied to calculate the pignistic probabilities of standalone
meta-models at five monitoring locations. It is noted that the pignistic probability values of
meta-model M5 are the highest among all meta-models considered (Table 2). Therefore, M5 is
the best performing meta-model in predicting salinity concentrations at specified monitoring
locations.

However, a standalone meta-model often fails to capture the true trends in the nonlinear
relationships of the input-output patterns. An ensemble of such meta-models addresses this
prediction uncertainty by incorporating the distinct features of standalone meta-models.
However, including an ill-performing meta-model in the ensemble often causes the overall
performance of the ensemble to deteriorate. Therefore, each contributing meta-model in the
ensemble needs to be judiciously chosen to reduce the ill effects of poorly performing meta-
models. This is done by assigning weights to each contributing meta-model in the ensemble.
The pignistic probabilities of each meta-model are used to calculate the corresponding weights
in the different combinations of meta-models. The weights are assigned to two-, three-, and
four-model combinations at all monitoring location (L1-L5).

These weights are used to compute the prediction of each of the meta-model combinations.
The corresponding performance indices are calculated for all combinations at all monitoring
locations (L1-L5).

These statistical indices are then scaled (normalized) so that the sum over all meta-models
for each BPA equals one. Then, the D-S theory of evidence is applied to find the pignistic
probabilities of each combination of meta-models. Based on the pignistic probability values, a
decision is made on the best meta-model combination among all considered meta-model

Table 1 Performance of MARS meta-models at monitoring location L1

Statistical indices M1 M2 M3 M4 M5

IOA 0.86 0.83 0.81 0.91 0.93
R 0.87 0.80 0.85 0.86 0.87
MAD 0.71 0.83 1.40 0.86 0.80
MAE 0.98 1.06 1.56 0.90 0.80
RMSE 1.32 1.42 1.92 1.11 0.97

*M1-M5 represents MARS based meta-models. M1 Meta-model 1, M2 Meta-model 2, M3 Meta-model 3, M4
Meta-model 4, M5 Meta-model 5

Table 2 Pignistic probabilities of each MARS meta-model

Monitoring locations M1 M2 M3 M4 M5 SUM

L1 0.217 0.144 0.044 0.245 0.350 1
L2 0.213 0.204 0.046 0.206 0.331 1
L3 0.210 0.220 0.050 0.202 0.316 1
L4 0.177 0.191 0.046 0.234 0.353 1
L5 0.186 0.178 0.054 0.244 0.338 1

*L1-L5 represents five monitoring locations
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combinations. The combined meta-model with the highest pignistic probability is designated
as the best combination of meta-models (ensemble). A combination of M1-M2-M4-M5
produced the highest pignistic probabilities of 0.816, 0.818, 0.817, 0.818, and 0.817 for
monitoring locations L1, L2, L3, L4, and L5, respectively. The weights of the contributing
meta-models in the best combination of meta-models are then calculated.

These weights are used to calculate the predictions of the ensemble meta-models at different
monitoring locations. The performance of the ensemble meta-models on the test dataset is
calculated, and compared with the best performing meta-models (Table 3).

The performance is evaluated based on several performance indices. It can be observed
from Table 3 that the ensemble meta-model provides similar results when compared with the
best meta-model in the ensemble. R criterion indicates the superior performance of the
ensemble meta-model compared to the best meta-model at monitoring locations L1, L2, L3,
and L4. At location L5, the best meta-model produces slightly higher values of R than the
ensemble meta-model. The performances of the meta-models are also assessed using IOA
index (Willmott 1984). The IOA index is a measure of the extent of model prediction errors.
The values of the IOA index varies between 0 and 1. An IOA index of 1 indicates a perfect
match between predicted and observed salinity concentrations, and a value of 0 specifies no
match at all (Willmott 1984). Based on the IOA index, the best meta-model’s predictions at all
monitoring locations are slightly better than the ensemble meta-model’s predictions. The
differences in predictions are negligible, and therefore the ensemble meta-model can be used
to predict salinity concentrations at all locations. Moreover, the best meta-model’s performance
may not be equally well when it is presented with a new unseen test dataset. As the ensemble
meta-model contains distinct features of different standalone meta-models, the ensemble
approach is likely to provide better predictions in a diverse range of datasets. Notably, the
IOA index is excessively sensitive to extreme values arising from the use of the squared
differences (Legates and McCabe 1999).

Another performance evaluation criterion used for performance evaluation is theKGE. TheKGE
criterion is based on three components: correlation, bias, and variability. The KGE criterion is
obtained by calculating the Euclidian distance of these three constituents from the ideal point (Gupta
et al. 2009). The KGE criterion also provides a prediction of performance of the ensemble meta-
models compared to the best meta-model at all monitoring locations (Table 3). Model performances
are also assessed using RRMSE criterion, which integrates the variance and the bias of the forecast
errors, and provides a good measure of prediction capability. Both the ensemble meta-models and
the best meta-models at all monitoring locations provide similar results when the RRMSE criterion
is used. TheMAPRE criterion, providing information on the distribution of errors, is also used in the
performance evaluation. At monitoring location L1, the ensemble meta-model provides better

Table 3 Performance of the ensemble meta-model and the best standalone meta-model on test dataset

Monitoring locations R IOA KGE RRMSE MAPRE, %

B E B E B E B E B E

L1 0.868 0.875 0.927 0.924 0.831 0.802 0.032 0.032 2.583 2.516
L2 0.794 0.796 0.884 0.874 0.765 0.745 0.067 0.070 5.395 5.460
L3 0.893 0.893 0.942 0.935 0.868 0.848 0.074 0.078 6.014 6.160
L4 0.683 0.688 0.805 0.796 0.609 0.602 0.053 0.054 4.299 4.415
L5 0.741 0.739 0.846 0.836 0.677 0.666 0.038 0.039 3.091 3.257

*B and E represents the best meta-model and the ensemble meta-model, respectively
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results in terms of theMAPRE criterion. At all othermonitoring locations, the ensemblemeta-model
performs equally well when compared to the best meta-model. Therefore, it can be concluded from
the preceding discussion that an ensemble of meta-models based on the D-S theory of evidence can
be applied to provide a reasonable prediction of the extent of saltwater intrusion phenomena in
coastal aquifers. As the ensemble meta-model contains distinct features of the contributing meta-
models, the ensemble approach is likely to provide more reliable Pareto optimal solutions in the
saltwater intrusion management models. The quality of the Pareto optimal solutions obtained from
both the ensemble and the standalone meta-models is presented in the next section.

4.2 Meta-Model Based Saltwater Intrusion Management Models

Ensemble meta-model and standalone meta-models are integrated separately with a multiple
objective optimization algorithm (CEMOGA) in order to develop the management models.
The CEMOGA parameters are selected by performing a sensitivity analysis, which evaluates
various combinations of different parameters. The optimal combination of different parameters
thus selected are: population size = 3000, crossover rate = 0.95, Pareto front population frac-
tion = 0.7, function tolerance = 1e-05, constraint tolerance = 1e-05. The ensemble meta-model
and five standalone meta-models are utilized to develop six management models. The resulting
Pareto fronts are presented in Fig. 4. The Pareto fronts in Fig. 4 provide non-dominated
optimal solutions of groundwater abstraction values, which are obtained by satisfying the
constraints of maximum permissible salinity concentrations at specified monitoring locations.
From the alternative feasible optimal solutions, the appropriate combinations of water abstrac-
tion from the production and barrier wells can be selected.

Figure 4 demonstrates that the ensemble meta-model provides better solutions than the best
meta-model (M5), as well as M3 andM4. For total barrier well abstractions of 9000 m3/day the
corresponding total production well abstractions are approximately 35,800 m3/day, 35,200 m3/
day, 31,200 m3/day, and 34,500 m3/day for the ensemble meta-model, M5, M3, and M4,
respectively. This implies that the better generalization capability of the ensemble meta-model
captures the randomly generated groundwater abstractions by the optimization algorithm more
accurately than the standalone meta-models. However, meta-models M1 and M2 produce
relatively better solutions than both the other standalone meta-models and the ensemble
meta-model. For the same 9000 m3/day of barrier well abstractions, meta-models M1 and
M2 provide approximately 38,800 m3/day and 39,500 m3/day of total water abstractions from
the production wells. The probable reason is that a standalone meta-model fails to capture the
true trends in the randomly generated groundwater abstractions with the optimization algo-
rithm. As the generalization capability of a meta-model decreases, the probability of the
corresponding Pareto optimal front being infeasible increases. Since optimal solutions are
obtained from a constrained optimization, i.e. optimal solutions are constrained by the maxi-
mum permissible upper limit on salinity concentrations, the uncertainties associated with the
standalone meta-model often forces the optimal solution to move into the infeasible region
(Sreekanth and Datta 2011a).

The stochastic nature of CEMOGA may produce different results for different runs of the
same optimization problem. Therefore, the Pareto optimal solutions obtained from the multi-
objective optimization formulation are compared with those obtained from a single objective
formulation. The multi-objective formulation is converted to single objective one by assigning
one of the objectives as a binding constraint. For this purpose, total barrier well abstractions are
used as the constraint of the optimization problem. Abstraction values of 0–20,000 m3/day
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with an interval of 1000 m3/day are used to obtain the corresponding total production well
abstractions. Results are illustrated in Fig. 5. Figure 5 presents the resulting Pareto optimal
fronts produced by the ensemble meta-model and the standalone meta-models. It is noted that
the single objective optimization formulation provides relatively higher values of total pro-
duction well abstractions. However, the results follow a similar trend when compared to the
multiple objective formulation. The ensemble meta-model provides better solutions than the
M3, M4, and M5 meta-models in terms of total production well abstractions. On the other
hand, meta-models M1 and M2 produce better solutions than the ensemble meta-model. While
the quantity is different, the two optimization procedures provide similar trends of results.

It is important to note that a better solution in terms of the objective function value may
result from inaccurate prediction of the aquifer responses as obtained by using different
standalone meta-models. It is expected that the ensemble meta-model predictions are more
accurate, and hence the optimum solution based on the ensemble meta-model is more accurate
and reliable. It is also noted from Figs. 4 and 5 that the ensemble based optimum solutions are
placed somewhere in between the solutions based on other models. This can be intuitively
justified, as it is plausible to assume that the better optimal solutions are due to less accurate
prediction of the aquifer responses, and therefore may represent actual constraint violations.
Therefore, the obtained optimum management strategies based on different meta-models are
tested by solving the more accurate numerical simulation model.
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Fig. 4 Pareto optimal fronts obtained from the ensemble and standalone meta-models
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4.3 Validation of the Pareto optimal solutions of the management models

The reliability of the optimal solutions is validated by comparing the corresponding salinity
concentration values obtained from meta-models and the simulation model. For this, a number
of solutions are arbitrarily chosen from the Pareto optimal fronts. The optimal solutions are
then used as inputs to the ensemble meta-model, standalone meta-models, and the numerical
simulation model. Corresponding salinity concentrations are obtained as solutions at specified
monitoring locations. Percentage Relative Error (PRE) values are then computed from the
meta-model predictions and the simulation model outputs (Table 4). It is observed from Table 4
that accuracy in terms of PRE values vary at different solutions for a particular monitoring
location. For example, at location L1, the best meta-model outperforms the ensemble in
solution S1 whereas the ensemble predictions are better than the best meta-model in solution
S2. Likewise, at location L3, ensemble predictions are better for solution S1 whereas best
meta-model predictions are better for solution S2.

The PRE values (Table 4) for all but one standalone meta-models (M5) utilized for
prediction show that the ensemble model predictions of salinity for the chosen optimal
management strategy are smaller than the PRE values from the stand alone meta-models.
However, the errors are comparable and similar for the best meta-model in the ensemble (M5
is the best performing meta-model). It needs to be noted that for an illustrative aquifer, it may
be relatively easy to identify the best performing meta-model as the parameters, inputs, and
measurement are assumed to be available for different scenarios of management. In real life
aquifers, where there are uncertainties and errors in estimation of parameters and measure-
ments, it is very difficult to clearly identify the best performing meta-model amongst a set of
candidate meta-models. This issue is actually addressed by using the ensemble meta-model,
when it is no longer required to identify a best performing standalone meta-model. The
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Fig. 5 Pareto optimal fronts produced by the ensemble and standalone meta-models for selected total amount of
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ensemble meta-model ensures improved accuracy of the predicted salinity values resulting
from the chosen optimal management strategy.

In general, it can be argued that the ensemble meta-model provides relatively stable
solutions at all monitoring locations. Therefore, the proposed ensemble meta-model based
management model can be successfully applied to achieve optimal groundwater abstractions to
control saltwater intrusion in a coastal aquifer subject to prediction and parameter
uncertainties.

5 Summary and Conclusions

This study presents the application of the D-S theory of evidence to select an ensemble meta-
model based on the optimal combination of meta-models, in order to improve the accuracy of
approximating density reliant combined flow and solute transport processes in coastal aquifer
systems. The study also applies the ensemble meta-model in the development of management
models for prescribing optimal values of groundwater abstractions. This abstraction policy
satisfies the constraints on maximum permissible salinity concentrations at specified monitor-
ing locations. The management policy explicitly incorporates uncertainties associated with
groundwater parameters and meta-model predictions. Use of the chosen ensemble model
instead of standalone meta-models ensures improved accuracy of salinity prediction in the
aquifer. Five MARS based standalone meta-models are developed from randomly paired
realizations of uncertain model parameters and transient groundwater abstractions. Different
combinations of these meta-models are assigned different weights determined by the D-S
theory of evidence. The best meta-model combination is selected by comparing the pignistic
probabilities of each combination as per the D-S theory of evidence. The higher the value of
pignistic probability the better is the prediction capability of the meta-models or the combi-
nation of meta-models. The best combination of meta-models, M1-M2-M4-M5 has the highest
pignistic probability values of 0.816, 0.818, 0.817, 0.818, and 0.817 at monitoring locations
L1, L2, L3, L4, and L5 respectively. This ensemble meta-model and all the five standalone
meta-models are separately linked to the optimization algorithm (CEMOGA) in order to
develop the coastal aquifer saltwater intrusion management models.

The performance of the proposed approach is assessed by using an illustrative multilayered
coastal aquifer study area. Comparison results indicate the superiority of the management
strategies prescribed by the proposed ensemble meta-model over those produced by most of the
standalone meta-models contributing to the ensemble. The Ensemble meta-model also provides a

Table 4 Percentage relative error between meta-model predicted and simulation model outputs for selected
optimal solutions

Ensemble M1 M2 M3 M4 M5

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

L1 2.15 1.21 6.62 4.95 13.23 16.54 4.25 4.99 6.38 3.94 1.78 1.93
L2 5.90 4.00 5.82 9.66 19.35 25.30 5.17 6.26 5.25 6.26 5.03 5.00
L3 5.37 1.74 8.34 12.41 24.31 25.48 14.36 14.83 9.18 9.08 3.67 3.61
L4 0.22 1.21 6.50 9.94 11.61 9.09 5.26 10.39 2.78 4.70 0.27 1.19
L5 0.70 0.88 3.22 7.13 11.95 11.36 4.51 7.98 1.89 3.08 1.00 0.60

*S1 and S2 represents solution 1 and solution 2, respectively
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more accurate and therefore more reliable solution in terms of the quality of the Pareto optimal
front. Therefore, the proposed D-S based ensemble meta-model can potentially be applied to
develop optimal groundwater abstraction policies for multilayered coastal aquifers.

The study assumes only vertical heterogeneity in terms of multiple layers of materials. The
application of the developed methodology in a more complex heterogeneous coastal aquifer
system would be an interesting topic for future research. Moreover, the findings of the study
may be extended to using multiple algorithms of meta-models in order to develop a hetero-
geneous ensemble of meta-models.
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